62 research outputs found

    A model of spatially restricted transcription in opposing gradients of activators and repressors

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102118/1/msb201248-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102118/2/msb201248.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102118/3/msb201248.reviewer_comments.pd

    Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo

    Get PDF
    A well-defined set of transcriptional regulatory modules was created and analyzed in the Drosophila embryo.Fractional occupancy-based models were developed to explain the interaction of short range transcriptional repressors with endogenous activators by using quantitative data from these modules.Our fractional occupancy-based modeling uncovered specific quantitative features of short-range repressors; a complex nonlinear quenching relationship, similar quenching efficiencies for different activators, and modest levels of cooperativityThe extension of the study to endogenous enhancers highlighted several features of enhancer architecture design in Drosophila embryos

    Regulation of Ubx Expression by Epigenetic Enhancer Silencing in Response to Ubx Levels and Genetic Variation

    Get PDF
    For gene products that must be present in cells at defined concentrations, expression levels must be tightly controlled to ensure robustness against environmental, genetic, and developmental noise. By studying the regulation of the concentration-sensitive Drosophila melanogaster Hox gene Ultrabithorax (Ubx), we found that Ubx enhancer activities respond to both increases in Ubx levels and genetic background. Large, transient increases in Ubx levels are capable of silencing all enhancer input into Ubx transcription, resulting in the complete silencing of this gene. Small increases in Ubx levels, brought about by duplications of the Ubx locus, cause sporadic silencing of subsets of Ubx enhancers. Ubx enhancer silencing can also be induced by outcrossing laboratory stocks to D. melanogaster strains established from wild flies from around the world. These results suggest that enhancer activities are not rigidly determined, but instead are sensitive to genetic background. Together, these findings suggest that enhancer silencing may be used to maintain gene product levels within the correct range in response to natural genetic variation

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay

    Get PDF
    Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut

    Genomic characterization of a repetitive motif strongly associated with developmental genes in Drosophila

    Get PDF
    BACKGROUND: Non-coding DNA represents a high proportion of all metazoan genomes. Although an undetermined fraction of this DNA may be considered devoid of any function, it also contains important information residing in specific cis-regulatory sequences. RESULTS: We report a 27 bp motif that is overrepresented within the fly genome. This motif does not show any significant similarity with transposon sequences and is strongly associated with genes involved in development and/or signal transduction. The 27 bp motif is preferentially located within introns, and has a tendency to be present in multiple copies around genes. Furthermore, it is often found embedded in known non-coding regulatory regions. The regulatory network defined by this motif is partially shared in D. pseudoobscura. CONCLUSION: We have identified a 27 bp cis-regulatory sequence widely distributed within the Drosophila genome in association with developmental genes. This motif may be very useful towards the annotation of functional regulatory regions within the Drosophila genome and the construction of regulatory networks of Drosophila development

    Association of C1QB gene polymorphism with schizophrenia in Armenian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is a complex, multifactorial psychiatric disorder. Our previous findings indicated that altered functional activity of the complement system, a major mediator of the immune response, is implicated in the pathogenesis of schizophrenia. In order to explore whether these alterations are genetically determined or not, in the present study we evaluated the possible association of complement C1Q component gene variants with susceptibility to schizophrenia in Armenian population, focusing on four frequent single nucleotide polymorphisms (SNPs) of <it>C1QA </it>and <it>C1QB </it>genes.</p> <p>Methods</p> <p>In the present study four SNPs of the complement C1Q component genes (<it>C1QA</it>: rs292001, <it>C1QB </it>rs291982, rs631090, rs913243) were investigated in schizophrenia-affected and healthy subjects. Unrelated Caucasian individuals of Armenian nationality, 225 schizophrenic patients and the same number of age- and sex-matched healthy subjects, were genotyped. Genotyping was performed using polymerase chain reaction with sequence-specific primers (PCR-SSP) and quantitative real-time (qRT) PCR methods.</p> <p>Results</p> <p>While there was no association between <it>C1QA </it>rs292001, <it>C1QB </it>rs913243 and rs631090 genetic variants and schizophrenia, the <it>C1QB </it>rs291982*G minor allele was significantly overrepresented in schizophrenic patients (G allele frequency 58%) when compared to healthy subjects (46%, OR = 1.64, <it>p</it><sub>corr </sub>= 0.0008). Importantly, the susceptibility for schizophrenia was particularly associated with <it>C1QB </it>rs291982 GG genotype (OR = 2.5, <it>p</it><sub>corrected </sub>= 9.6E-5).</p> <p>Conclusions</p> <p>The results obtained suggest that <it>C1QB </it>gene may be considered as a relevant candidate gene for susceptibility to schizophrenia, and its rs291982*G minor allele might represent a risk factor for schizophrenia at least in Armenian population. Replication in other centers/populations is necessary to verify this conclusion.</p
    corecore